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Abstract— Advanced power systems are complex and non-linear, and their operation can change to a wide 

extent [1]. Synchronous generator is at core of power system, and it is necessary to maintain reliable 

operation throughout. This paper presents the excitation control of the synchronous generator with the 

application of a neural network-based controller. Ordinary excitation control strategies have a slower 

reaction to non-linearities happening within the excitation system [2]. Executing Neural Network based 

controller(NNC) decreases reaction time showing strong steadiness [3].. Terminal voltage and current is 

nourished to the input of neural network and is processed to give reference current as output which then is 

converted into reference voltage and is used to produce duty cycle of thyristor by comparing it with varying 

field current. The neural network-based controller will sense the deviation of voltage and based on 

necessities, give the gating command to thyristor valves and in this manner acting quickly to the dynamics 

of the power system. 
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I. INTRODUCTION  

One of the most significant strategies to improve power system stability and ensure the quality of electrical 

power it produces is synchronous generator excitation control. The excitation system's principal control 

function is to modify the field voltage in response to changes in the terminal voltage. It must be able to 

respond fast to a disruption, hence improving transient and tiny signal stability [4]. Excitation system control 

in generation control is done mainly to regulate generator voltage and reactive power output [5].  

Practical methods for nonlinear control include the use of feedback loops to cancel plant nonlinearities [6]. 

The approximation of a non-linear system with a linearized model yields the application of adaptive control, 

where real-time measurements of the plant inputs are used, either to derive explicitly the plant model or 

design a controller based on this model (Indirect adaptive control), or to directly modify the controller output 

(direct adaptive control) [7]. Ordinary excitation control strategies have a slower reaction to non-linearities 

happening within the excitation framework. To enhance system response, excitation control of synchronous 

generators with the application of Neural Network Controller(NNC) has been proposed which can enhance 

stability during abnormalities. Executing NNC decreases reaction time showing strong steadiness. 

II. EXCITATION SYSTEM 

An excitation system is a system that provides the necessary field current to the synchronous machine's 

rotor winding. In other terms, an excitation system is one that is utilized to generate flux by flowing current 

through the field coil. The most important characteristics of an excitation system are reliability in all 
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operating circumstances, ease of control, ease of maintenance, stability, and fast transient response. The 

level of excitation required is determined by the machine's load current, load power factor, and speed. 

Furthermore, in a power system, the excitation system's protective features enable the synchronous 

machines' rated capacity limits to be improved [8]. 

 

1.1 Types Of Excitation System 

Generally, there are 3 types of excitation system as follows: 

2.1.1 DC Excitation 

This category's excitation system uses a dc generator as a source of excitation power and delivers current 

to the synchronous machine's rotor via a slip ring. The exciter can be powered by a motor or the generator 

shaft [9]. It can be self-excited or independently excited.  

2.1.2  AC Excitation  

An alternator and thyristor rectifier bridge are directly connected to the main alternator shaft in the AC 

excitation system [10]. 

2.1.3  Static Excitation 

This type of system gives synchronous generator field winding with excitation current by employing slip 

rings.. Station batteries are as a rule utilized as extra control sources and the method is known as field 

flashing [11].  

 
Figure 1: Static Excitation System 

 

Excitation Transformer(ET) is employed to step down voltage and current to desired level. A thyristor 

network feeds the generator field. During generator faults, the field suppression resistor absorbs energy in 

the field circuit, while the field breaker guarantees field isolation. 

 

1.2 Thyristor Valve(B6 connection) 

A fully-controlled three-phase full-wave converter is made up of six thyristors coupled as illustrated in the 

diagram below. All six thyristors are controlled switches that are activated when appropriate gate trigger 

signals are applied [12]. The thyristor with the greatest positive voltage at its anode conducts when triggered 
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in the three-phase full-wave regulated rectifier circuit, while the thyristor with the most negative voltage at 

its cathode returns the load current if triggered. 

 
Figure 2:  Phase Full Wave Controlled Rectifier 

 

The average output voltage assuming continuous conduction and a strongly inductive load, can be calculated 

as follows. 

Vdc =
6√3

π
Vmsin

π

6
cos α =

3√3Vm

π
cos(α) 

 

The output current is given by 

Idc =
3√3Vm

πR
cos(α) 

Where: 

Vdc is the average dc output voltage 

Vm the maximum line to neutral voltage 

α the firing angle of thyristor valve. 

 

III. ARTIFICIAL NEURAL NETWORK 

 

A neural network is a set of algorithms that attempts to detect underlying relationships in a batch of data 

using a method that mimics how the human brain works [13]. Neural networks can adapt to changing input, 

they can produce the best possible outcome without rewriting the output criteria. The artificial intelligence-

based notion of neural networks is quickly gaining traction in the creation of trading systems [14]. 

 

The computing frameworks motivated by natural neural systems to perform diverse assignments with a 

colossal sum of information included are called Artificial Neural Network. Diverse calculations are utilized 

to get the connections in each set of information to create the leading that comes about from the changing 

inputs [15]. The network is prepared to create the specified yields, and diverse models are utilized to foresee 

the long haul that comes about with the information. The neurons are interconnected so that it works like a 

human brain.  

Neural systems are prepared and instructed similarly to a child’s creating brain is prepared [16]. They cannot 

be modified specifically for a specific assignment. They are prepared in such a way that they can adjust 

agreeing to the changing input.  
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Figure 3: Structure of neural Network 

 

A simple neural network consists of three components: 

1. Input layer 

2. Hidden layer 

3. Output layer 

Input Layer:  

Also known as Input nodes, the inputs/information from the outside world is provided to the model to learn 

and derive conclusions. Input nodes pass the information to the next layer i.e Hidden layer. 

Hidden Layer:  

Hidden layer is the set of neurons where all the computations are performed on the input data. There can be 

any number of hidden layers in a neural network. These are connected by weights and biases The simplest 

network consists of a single hidden layer. 

Output layer:  

The output layer is the output/conclusions of the model derived from all the computations performed. There 

can be single or multiple nodes in the output layer. 

 

Each input is duplicated by its particular weights and biases, and after that, they are activated. The values 

of weights determine the strength of signal and biases are constant values to provide better flexibility and 

generalization to the network [17]. The net activated inputs of the neurons are again activated when it goes 

out from the neurons.  

Error is calculated between calculated and desired values. Error is reduced by updating values of weights 

and is limited by epochs to be performed. Epochs determine how many times the data’s move back and 

forth in the  network. There are different Activation Functions like Threshold function, Piecewise linear 

work, or Sigmoid function. 

Mathematically, if MSE is used to determine the output: 
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Activated Inputs =  ∑(Inputs ∗ Weights) +

N

1

∑ bias

N

1

 

Where N is number of inputs, weights and biases in the network 

The output is given by: 

Calculated Output =  Activation Function(Activated inputs) 

The error is then calculated by: 

MSE =  
1

2
(Desired Output − Calculated Output)2 

IV. METHODOLOGY 

To perform the research work, it is started with identifying the main scope of the project and its related 

objectives. This is followed by reviewing of literary texts. Then, Neuro-controller is designed and result is 

analyzed.  

For development of Neuro-controller, following flowchart for coding is used. 

 
Figure 4: Flowchart for Coding 
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V. DEVELOPMENT OF NEUROCONTROLLER 

     For development of NNC, the NNC and Generator parameters are given in following tables. 

 

Table 1: NNC Parameters 

Parameters Values 

Epoch 1000 

Learning rate 0.8 

No. of Inputs 2 

No. of Hidden Layers 2 

No. of Neurons In Hidden Layer 1 4 

No. of Neurons In Hidden Layer 2 3 

No. of Weights connecting Input & H1 8 

No. of Weights connecting H1 & H2 12 

No. of Weights connecting H1& Output 3 

 

Table 2: Generator Parameter 

Parameters Values Units 

Rated power at UPF 200 MVA 

Rated power at 0.9 PF lagging 220 MVA 

Generator rated voltage 13.8 kV 

Frequency 50 Hz 

Terminal Voltage from ET 415 V 

Field Voltage 250 V 

Field Current 1270 A 

Field Resistance 0.196850393 Ω 

Upper Limit of Current 1333.5 A 

Lower Limit of Current 1206.5 A 

 

 

The implementation of NNC to generate duty cycle in synchronous generator excitation system is given 

below. 
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Figure 5: Schematic Diagram of Excitation Control Using NNC and B6 Thyristor Connection 

 

For developing NNC, following neural network structure has been chosen. As depicted below, there are two 

inputs from the exterior system is sampled and fed to the network. Two hidden layers are chosen, and one 

output is taken from the network. There are 4 neurons in the first hidden layer and 3 neurons in the second 

hidden layer. The output is reference field current which is converted to reference field voltage and is 

compared with varying values of field voltage. The error in field voltage is converted into firing angle which 

is added and subtracted during increase and decrease in field voltage respectively. 

 

 
Figure 6: Neural Network Structure 

 

The firing angle calculation of individual thyristors is given below: 

 𝛼T1 = 𝛼 + 30˚ 
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𝛼T2 = 𝛼 + 150˚ 

𝛼T3 = 𝛼 + 270˚ 

𝛼T4 = 𝛼 + 210˚ 

𝛼T5 = 𝛼 + 330˚ 

𝛼T6 = 𝛼 + 90˚ 

Thyristors are fired at 60˚ depending on the crossover point of input AC voltage. The designed NNC will 

first check for limit violations. If input values are out of limit, NNC will display warning signals and execute 

without performing any operation. However provisions are there to operate the system beyond limits by 

displaying warning signal and executing the code. 

 

VI. RESULT AND DISCUSSION 

 

The MATLAB code was firstly executed at rated values of terminal voltage and current to calculate firing 

angle required to maintain output DC voltage of 250V. After calculating firing angle, input voltage and 

current values were varied within range of ±5% of rated value to study performance and response time of 

NNC. The response of NNC to various values of input voltage and current is given below. 

 

 
 

Figure 7: Variation Of Firing Instance Of All Thyristors With Varying  Field Voltage 

 

From Figure 7, the rated firing angle varies between 67.4564˚ to 69.7038˚ during variation in field voltage. 

This value is used for determining firing angle of all thyristors. To obtain 250V output voltage, T6 is fired 

at 38.6404 followed by T1, T2,T3, T4 and T5 with increase in  60˚ at each thyristors. Also, for single 

thyristor, firing angle varies within limits in relation to ±5% variation of terminal voltage. The lower limit 

of firing angle of thyristor T6 is 37.4564˚ with increase of 60˚ in following thyristors. The upper limit 
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includes 39.7038 for thyristor T1 and increase by 60˚ in following thyristors. The average execution time 

of NNC was found to be 0.00186418s. 

 

 
 

Figure 8:  Variation Of Error In Firing Angle With Varying Terminal Voltage 

 

From Figure 8,  it can be observed that error is decreasing with increase in terminal voltage and is increasing 

with decrease in terminal voltage. Increase in error is depicting that firing angle has to be reduced to get 

desired output value of field voltage and vice versa. Error in firing angle at rated terminal voltage is 0 and 

during ±5% variation, it varies from -1.0632˚ to 1.1842˚  indicating that firing angle should be increased 

and decreased respectively. By doing so, output DC voltage is maintained at desired level. 

 

 
 

Figure 9: Variation Of New Firing Angle With Varying Terminal Voltage 
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From Figure 9, at rated terminal voltage, rated firing angle is maintained. During 5% increase in terminal 

voltage, if firing angle is not change, it will result in 5% increased in field voltage and vice versa. To 

maintain rated output voltage, when there is +5% increase in terminal voltage,  firing angle is increased 

from 68.6406˚ to 69.7038˚ thereby decreasing the magnitude of output voltage. Similarly, during 5% 

decrease in terminal voltage, angle decreased to 67.4564˚ from 68.6406˚ thereby maintaining constant 

output voltage. 

For NNC, values of epoch and learning rate was varied to observe the variation in response time and NNC 

output. 

From Figure 10, it can be observed that keeping epoch constant(1000), during variation of learning late, 

NNC output is also varied. At low values of learning rate, the calculated output of NNC is not same as the 

desired output. When learning rate increases, calculated output matches desired output. At learning rate of 

0.4, desired output is attained. 

 

 
Figure 10:  Response Of Output Voltage To Various Values Of Learning Rate 

 

 
Figure 11: Variation Of Response Time And NNC Output With Varying Epoch 
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From above plot, it can be observed that keeping learning constant(0.5), at lower values of epoch, the 

response time of NNC is fastest but the NNC output is not at desired level. As epoch increases, NNC output 

is improved but response time is increasing too. The optimum value of epoch at ̀ which NNC output matches 

desired output is 500 and corresponding response time is 1.818ms. 

To determine the accuracy, comparison between the actual value of firing angle of thyristors and values 

obtained from NNC were compared. On average, the overall accuracy was found to be 99.9813%. 

 

VII. CONCLUSION 

Employing neural network to control excitation in synchronous generator is great approach as it reduces 

response time. By varying the firing angle through usage of NNC, it was possible to achieve desired field 

voltage to maintain excitation. During increase in terminal voltage, NNC as able to decrease field voltage 

to desired level by increasing firing angle and vice versa.  The average response time was found to be 

0.00182s during variation in terminal voltage which is indeed much faster than conventional controllers i.e, 

the average response time of AVR is 0.5s and PID controller is 0.1. However, it can vary during integration 

with digital control system where input values are sampled and fed to NNC and the output is converted to 

pulse timing by digital Pulse Width Modulator(PWM) controller. 

Thus, from the findings, it is concluded that employing neural network based controller can sense the 

deviation of voltage and based on necessities, give the firing to thyristor valves and in this manner acting 

quickly to the dynamics of the power system. 
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